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ABSTRACT
The Global Research Activity Map (GRAM) is an interactive web-
based system for visualizing and analyzing worldwide scholarship
activity as represented by research topics. The underlying data for
GRAM is obtained from Google Scholar academic research profiles
and is used to create a weighted topic graph. Nodes correspond to
self-reported research topics and edges indicate co-occurring topics
in the profiles. The GRAM system supports map-based interactive
features, including semantic zooming, panning, and searching. Map
overlays can be used to compare human resource investment, dis-
played as the relative number of active researchers in particular topic
areas, as well scholarly output in terms of citations and normalized
citation counts. Evaluation of the GRAM system, with the help of
university research management stakeholders, reveals interesting
patterns in research investment and output for universities across the
world (USA, Europe, Asia) and for different types of universities.
While some of these patterns are expected, others are surprising.
Overall, GRAM can be a useful tool to visualize human resource in-
vestment and research productivity in comparison to peers at a local,
regional and global scale. Such information is needed by university
administrators to identify institutional strengths and weaknesses and
to make strategic data-driven decisions.
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1 INTRODUCTION
University research activity is diverse and distributed, and it is dif-
ficult for university managers to get a comprehensive overview of
the research strengths and weaknesses in their own institution or to
efficiently compare the overall research profile of a university with
those of its peers and competitors. This is important for university
strategy, since managers need to address the following questions:

Q1 Where are the strengths and weaknesses in our institution?
In which particular research areas do we employ individuals
(or groups of individuals) who are recognized as making a
valuable contribution to knowledge?

Q2 How do these strengths and weaknesses compare with those
of our competitor universities? In which areas are we compar-
atively strong/weak? Where should we invest human capital
to improve our standing amongst our peers?

Citation information is, of course, important for addressing both
questions. Current tools (e.g., Google Scholar) show published pa-
pers and citation counts for individual researchers, and tell us the
most cited researcher in particular areas. They also tell us what top-
ics individual researchers work on, and who their collaborators are.
However, they do not provide an overall citation profile for an entire
institution that is based on research topic areas, and do not permit
comparison of the human resource investment between institutions.

Our prototype GRAM system is already used by senior managers
at our university to visualize, explore, compare and contrast our
human resource investment and citation output with that of other uni-
versities and benchmark-sets of universities, and to make decisions
on upcoming faculty appointments. Key to the GRAM system is
the classification and organization of human knowledge into topics,
since it is these topics that the university managers relate to when
making their humans resource investment decisions (for example,
by advertising for faculty in particular research areas).

There have been many attempts at classifying and organizing top-
ics of human knowledge, mostly using a top-down and hierarchical
approach, by dividing known fields of study into sub-categories [1,
20]. For example, we know that “computer science” includes the
sub-topics of “operating systems” and “algorithms.” Taking this ap-
proach means that we assign known labels to fields of study, and
make hierarchical connections between them based on what we
know about them, as in the ACM classification; see Fig. 1(a). How-
ever, a more realistic view of knowledge is a non-hierarchical one
which allows us to see, say in the form of a graph, different types of
connections between topics; see Fig. 1(b). Such knowledge graphs
can also be created in a top-down manner we know about them) but
both of these approaches can be criticized as being biased by the
views and extent of understanding of the knowledge graph creator.
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Figure 1: (a) Part of the ACM hierarchical topic classification;
(b) Part of a non-hierarchical topic network.

A more justifiable approach to representing the categories of
human knowledge and the relationships between them is to collect
and organize “bottom-up” data, that is, information about what
researchers actually study, and which topics are naturally linked
together through their common research activity. For example, in
creating a network of research articles, the list of references cited in
one article can be represented as being linked to each other, since
they are assumed have a common theme, even if only a loose one.
Providing an overview of human knowledge and areas of active
research is important not only in documenting and exploring the
trajectory of global research endeavors - an important contribution to
the history of knowledge - but also in benchmarking and comparing
individual researchers and their institutions.

GRAM takes a novel approach to the representation of human
research endeavor by (a) using bottom-up data provided by Google
Scholar; (b) depicting the knowledge network with a map-like visu-
alization; (c) supporting real-time in-the-browser semantic zooming;
and (d) providing overlays that depict the relative number of re-
searchers working on topics and the relative number of citations
for topics, with respect to each institution (or set of institutions).
GRAM makes it possible to see a high-level view research activity at
universities worldwide and interact with the data in an intuitive and
familiar way. Unlike expensive commercial tools, GRAM is open-
source and free and has the potential to be useful at many universities
interested in a high-level overview and comparisons with specific
other institutions or with national and international aggregate data.

2 RELATED WORK
There is related work in different domains: from science classifica-
tion and topic analysis, to visualizations for text and large graphs.
Knowledge classification: The most comprehensive bottom-up clas-
sification of science topics [15] uses data from ten years of Thomson
Reuters’ Web of Science [8] and eight years of Elsevier’s Scopus [7]
to group over 25,000 journals into 554 subdisciplines, each of which
is associated with exactly one of 13 disciplines (e.g., Mathematics,
Physics, Social Science). While the extensive graph can be pre-
sented with different views, it is not interactive, and its presentation
as an “overview" makes it difficult to elicit details. The Microsoft
Academic Graph is regularly updated, and is built from indexing re-
search papers, each of which is classified into over 50,000 “fields of

Figure 2: Overview of the GRAM system.

study” [40]. No visualization of the graph is provided, although it can
be queried using different search methods, and an API is provided.
The “fields of study” classifications have been found to be dynamic
and too specific, and the hierarchies not always meaningful [30].
Topic extraction: The hierarchical latent tree method extracts a set
of hierarchical topics to summarize the corpus at different levels of
abstraction - where a “topic” is determined by words that appear in
high frequency in the topic, and low frequency in others. While this
method has been implemented in a visual analytics system [45] it has
not, to our knowledge, been applied to extensive databases contain-
ing a large number of topics. Another analysis of a limited corpus
of papers (Proceedings of the National Academy of Sciences from
1982-2001) uses a burst detection algorithm and co-word occurrence
analysis to find salient topics and trends over time [32].

Aside from analyzing the full text of articles, topics have also
simply been identified from the combination of paper titles and cited
references (papers in the “Information Science” journal [43]), paper
titles only (computer science papers [23]), and medical records [46].
In all these cases, the methodology proposed is demonstrated on
only a small, well-defined corpus. Other examples of limited appli-
cation of topic extraction include: computer science conferences and
journals from the DLPB database [23], trends in computer science
research [20], and publications in data visualization [28].
Graph visualization: Graph drawing libraries and toolkits make it
easy for a graph to be visualized (e.g., GraphViz [5], OGDF [18],
MSAGL [33], and VTK [38]); few of these support interaction
or navigation – features essential for exploration of large graphs.
Even visualization toolkits supporting graph manipulation (e.g.,
Prefuse [27], Tulip [10], Gephi [12], yEd [44]) have difficulty render-
ing large graphs in a manner that makes them easy to use. Multi-level
interfaces for large graph exploration (e.g ASK-GraphView [9], topo-
logical fisheye views [25], and Grokker [35]) and domain-specific
software (Pajek [19] for social networks, and Cytoscape [39] for bio-
logical data) rely on meta-graph information comprising meta-nodes
and meta-edges: representations that make direct navigation of and
interaction with large graphs counter-intuitive.



GRAM: Global Research Activity Map AVI ’18, May 29-June 1, 2018, Castiglione della Pescaia, Italy

Mapping knowledge is often associated with trying to map the
information, often in a form that relates to geographical maps, e.g.,
“Atlas of Science" [13] and “Atlas of Knowledge" [14]. Navigating
and reading large networks represented as node-link diagrams are
often difficult for non-experts while map-based visualizations of the
same type of data have been shown to be both effective (in terms of
time and error) [37] but also more memorable and engaging [36].

Our contributions: In the context of the prior research on knowl-
edge classification, topic identification and large graph visualization,
the contribution of our work include

(1) An approach to deriving a representation of knowledge is
based on bottom-up analysis of publicly available data relat-
ing to active researchers (rather than research outputs).

(2) A system that allows us a glimpse in this large knowledge
landscape using a geographical map metaphor and supporting
map-exploration interactions: semantic zooming, panning,
searching, and application of overlays.

(3) A system that provides real-time semantic zooming interac-
tions with a large graph implemented in the browser.

(4) Overlays which highlight human resource investment and
areas of research activity for individual universities or for
aggregates (e.g, by type of university), functionality which to
the best of our knowledge is not available in other systems.

3 NETWORK GENERATION
A knowledge network represents topics as nodes and uses edges
to indicate that topics are related to each other. Extracting topics
from research articles (with topic co-occurrence within an article
indicating topic relationship) is a popular approach to creating a
knowledge network [23, 45] - but these methods do not allow for
easy identification of general topics (e.g., mathematics, physics) as
sub-graphs, nor do they include very specific topics (e.g., symmetry
detection algorithms, interactive graph visualization) as nodes.

Our approach rests on the assumption that people know the topics
that they work on: nobody is better placed to categorize researchers’
topic areas than the researchers themselves, and, while document
analysis might automatically identify and extract topic labels from
an article, only the researchers who wrote the article know precisely
the key topics of the paper. We therefore use the self-reported areas
of study as defined by researchers stored in the Google Scholar
(GS) database (note that other sources such as DBLP [3], index
only a subset of science publications and do not provide research
topics associated with publications). In GS, each researcher listed
can modify their profile to list the research topics that they work on,
and the co-occurrence of topics within a researcher’s list indicates a
relationship between them in our knowledge network.

Our network is generated using the following steps: scraping the
data from GS, extracting information about researchers and their
topics, cleaning the data to reduce ambiguity and duplication in the
topic labels, splitting topic phrases into constituent topics, merging
topics with common stems, and correcting anomalies. The result of
this process is a diagonal similarity matrix with topics as rows and
columns, with each cell representing the similarity between a pair of
topics, calculated as the number of times the topics co-occur.

Data Scraping: While some prior research of GS data exists [11, 22,
31], these tend to focus on analysis and comparisons of index and

citation data, rather than research topics. Data retrieval from GS is
laborious due to the lack of an API and metadata scarcity [16]. The
scope of our data is defined by including all GS entries associated
with the world’s top 1,000 universities (as listed by the Center for
World University Rankings [2]). We extracted the institution IDs
from GS (for example, MIT’s ID is 6345133980181568013) and
then scraped the URL associated with each institution to collect
research profiles of all individuals associated with the institution.
Using a regular expression to match relevant fields in the HTML,
we collected name, affiliation, total number of citations, and list of
research topics from each research profile. The total number of topics
extracted was 190,137, but after standardizing the topic separators
within the topic list, and using beautifulsoup [2] to tidy up html tags
for consistency, the number of distinct topics rose to 222,459.
Data Cleaning: We removed leading or trailing spaces, inconsistent
use of upper and lower case letters, unnecessary punctuation and
control characters, and duplicate topics. Many topics were phrases or
composite terms (e.g., “statistics for neuroscience,” “data and model
management,” “group theory and combinatorics,”); we removed
conjunctions (and, or) and other words with no semantic weight (for,
of), thus splitting topic phrases into their constituents.
Topic correction: Recent changes to GS mean that researchers cre-
ating their topic list are prompted with auto-suggestions, and are lim-
ited to five topics. Previously there was no constraint on the number
of topics, and they were all self-defined. Hence, there are naturally a
large number of typing errors and acronyms in the dataset. We used
Google’s OpenRefine [6] to identify and resolve typing errors, and
to find alternate representations of the same topic [17, 21, 29] (e.g
“Computer Human-Interaction” is equivalent to “Human-Computer
Interaction”; “Primary education” is the same as “Elementary educa-
tion”). This process reduced the number of unique topics to 210,588.
Topic removal: We dropped topics that were associated with four or
fewer people (aware that these topics might be topic labels in which
there were typing errors that were not captured by OpenRefine), and
topics that we identified as not being in English. This reduced the
number of topics to 39,067.
Merging: Merging was required for topics that are similar, but are
listed slightly differently; for example, “algorithm,” “algorithms,”
“algorithmics” are all the same topic, as are “organization,” “organi-
zational” and “organizing.” We used snowball [34] to find the root
word by applying stemming processes (removing endings such as
-s, -ed, -ing). “Algorithm,” “algorithms”, and “algorithmics” thus all
become “algorithm;” however “applied” and “applications” become
the meaningless term “appli.” To avoid this, we choose the main
topic to be the one with the highest frequency amongst all topics
with the same stem. This resulted in 35,028 topics.
Network reduction: We further reduced the size of the network by
removing leaf nodes, i.e., nodes that have only one edge connecting
them to other nodes. This brought the number of nodes to 34,774.

The final network contains 34,774 nodes and 646,582 edges.
There are 17 components, including one giant connected component
(34,741 nodes and 646,565 edges). The average shortest path length
is 3.141, indicating that the topic network is highly connected. The
graph has a low global clustering coefficient of 0.09 (defined as
the ratio of the number of triangles over the total number of node
triples) suggesting that topics are not typically tightly clustered into



AVI ’18, May 29-June 1, 2018, Castiglione della Pescaia, Italy R. Burd et al.

Topics Researchers
machine learning 10726
artificial intelligence 5766
neuroscience 5655
computer vision 5372
bioinformatics 4943
robotics 3398
data mining 3334
ecology 3281
materials science 3193
genetics 2951

Topics Degree
machine learning 3314
artificial intelligence 2404
neuroscience 2033
modeling 1902
bioinformatics 1878
climate change 1846
optimization 1827
education 1808
nanotechnology 1788
statistics 1659

Figure 3: Top 10 topics by degree and number of researchers.

triples. The node “machine learning” has the highest degree and more
researchers report working on this topic than any other. Figure 3
shows the top ten topics by degree and by number of researchers.

Interestingly, some universities seem to have more GS profiles
than academic staff, (likely due to doctoral and postdoctoral stu-
dents), although the majority of the universities are associated with
fewer profiles than the size of their academic staff. On average most
universities in our list are well represented by GS profiles; see Fig. 4.

Name of University Acad. Staff # Profiles
Stanford University 2118 8104
University of Washington 5803 5562
Harvard University 4671 5356
Massachusetts Institute of Technology 1021 3527
University of Michigan 6771 3413
University of Toronto 2547 3148
University of Cambridge 6645 2669
Texas A&M University 2700 2515
University of Minnesota 3804 2511
Pennsylvania State University 8864 2368

Figure 4: Academic staff size (Wikipedia) and GS profile count.

4 MAP GENERATION
Map-like representations provide a way to visualize relational data.
Graphs are a standard way to visualize relational data, with the ob-
jects defining nodes and the relationships defining edges. It requires
an additional step to get from graphs to maps: clusters of well-
connected vertices form countries, and countries share borders when
neighboring clusters are tightly interconnected. Maps are helpful in
visually representing clusters by explicitly defining the boundary of
the clusters and coloring the regions. While it often takes us consider-
able effort to understand graphs, a map representation is intuitive, as
most people are familiar with the notions of searching, panning, and
zooming. Finally, while edges in large graphs often end up creating a
“hairball” effect, edges can be removed from maps as we rely on the
Tobler’s first law of geography: “everything is related to everything
else, but near things are more related than distant things” [42].

We reduced the network a bit more with an edge filter: only those
pairs of nodes corresponding to topics that co-occur at least 10
times were retained. We call this the BaseGraph-1000 network and it
contains 6,052 nodes and 26,162 edges as it is based on GS profiles
from researchers in the top 1,000 universities in the world [2].
Visualizing the BaseGraph. The network was first embedded on
the plane using the Scalable Force-Directed graph layout algorithm

provided by GraphViz [5]. K-means clustering was then used to
group nodes into topic-clusters. To create the geographic map look,
we use a modified Voronoi diagram based on the embedding and
clustering, ensuring that the geographic regions are colored such
that no two adjacent countries have similar colors, using the spectral
vertex labeling method, following the GMap framework [26]. Each
geographic region represents a topic cluster. This diagram is the
BaseMap-1000.

Exploring the BaseMap. GMap produces a visual map from a given
graph which is a static image that is not ideal for user interaction,
such as zooming, panning, and searching. We enable exploration
of the BaseMap with the help of the google maps API [4]. Specif-
ically, we take the output from GMap and convert it into google
map objects (i.e., google.maps.SymbolPath, google.maps.Polygon,
google.maps.Polyline, etc), and provide eight zoom levels, each
showing subgraphs at varying levels of detail.

Labelling the Topics. Each node in the network represents a single
topic and when viewing the BaseMap topic labels should not over-
lap. We use the GraphViz implementation of node-overlap removal
provided by PRISM [24]. However, we wished to allow for seven
further levels of semantic zooming, each providing more detail of
the map. The Google Maps API handles the modifications required
for nodes, edges and clusters (and heatmaps, to be discussed later),
but does not cater for the introduction of node-label overlaps as more
detail is revealed through zooming.

To ensure that neither nodes nor labels overlap at any zoom-level,
we compute different node visibilities for different zoom-levels. For
each zoom-level, we sort the nodes by their weight, where node
weight is proportional to the number of researchers working on the
topic associated with the node. We make i-th node visible on the j-th
level if the bounding box of the i-th node does not overlap with the
bounding boxes of nodes 1,2, · · · , (i−1). Figure 5 shows how the
local neighborhood of the “computer vision” topic is changing in
different zoom levels.

Figure 5: Three zoom-level views near “computer vision.”

The size of the font label for topic t is directly proportional to
the number of researchers working on that topic, denoted by the
weight: w(t ). We assign font size from the range 100% to 300% of
the default browser font size, as follows:

Ft =


100 if wt/10 ≤ 100
300 if wt/10 ≥ 300
wt/10 otherwise

Searching the BaseMap. We provide basic search functionality,
which locates topics in the map containing given query terms. Click-
ing on a node shows the number of people who work on that topic
and highlights edges to adjacent nodes, that is, the other topics that
are frequently co-listed with that topic.
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Alternative BaseGraphs. The complete “whole-world” of topics
is represented in the BaseGraph-1000 network, aggregating data
over all 1,000 institutions. Different base graphs can be obtained
by aggregating the data over specified sub-sets of institutions: this
changes the weighting of the topic nodes (representing the number
of researchers working on that topic) and the connections between
the nodes. Indeed, some nodes may even disappear if no researcher
in the set of specified institutions works on that topic. As well as
the BaseGraph-1000, we have a base graph network which aggre-
gates all 215 USA universities represented within the original 1,000
(BaseGraph-USA). Both these base maps can be used as reference
points for comparing individual universities (or sets of universities).

5 STRENGTHS AND WEAKNESSES
Each topic node in the graph is associated with the name, institu-
tion, departmental affiliation and the number of citations for each
researcher who works in that topic area. We use this information
to facilitate further exploration of the data by departmental affili-
ation, via visual “overlays” representing knowledge strength and
weaknesses (in terms of number of researchers and citations).

When visualizing these overlays we use the same visual map
representation as BaseMap-1000 (thus preserving the reader’s mental
map by ensuring that topics are always located in the same position),
but since the number of researchers working on each topic will vary,
the node-weights (and hence the label font-sizes) are different.

Human resource investment: We use the data associating top-
ics with researchers (and their institutions) to provide an overlay
representation of human resource investment (HRI) in each topic for
a given institution, relative to the HRI of a larger set of institutions.

For example, we can compare the HRI for the aggregated set of
universities in Europe with reference to the “whole-world” topic
graph (BaseGraph-1000), indicating where the HRI for each topic
is higher or lower than the “whole-world” average. That is, to de-
termine the HRI in topic t in European universities when compared
with the reference network BaseGraph-1000, we calculate the dif-
ference between the percentage of researchers in Europe who work
on topic t and the percentage of researchers in BaseGraph-1000
who work on topic t. If this difference is positive (negative) then
we consider this a human resource strength (weakness) of the set of
universities. This is illustrated on the BaseMap-1000 with circles of
different color: green for strength and purple for weakness. The size
of the circles is proportional to the magnitude of the difference and
this is shown in a legend; see Fig. 6.

Citations: Each topic in a base graph has associated with it the
total number of research article citations, calculated as the sum of
the citation count (as recorded by GS) for all researchers working
on the topic. In the absence of information as to how citations are
distributed amongst the several topics that a researcher works on,
we associate the citation count for one researcher with all the topics
that the researcher works on. Thus, for each of our base graphs, we
have a citation count for each topic, which can be overlaid on the
BaseMap-1000 and visualized as with proportional circles or with a
heatmap (as done in most examples in this paper); see Fig. 6.

These citation counts are raw aggregates, and do not take into
account the fact that not all research fields cite at the same rate; e.g.,
“particle physics” is associated with more citations than average

Figure 6: Legends (for HRI and citations) and settings of the
system (e.g., for selecting individual or aggregate overlays).

(due to high number of co-authors and citations per paper). Figure 7
shows the topics with the highest number of citations per person.

Topics Cite/Person
particle physics 15906
high energy physics 15768
cosmology 7037
...
...
(2563) information visualization 1642
(2799) artificial intelligence 1551
(3526) machine learning 1263

Figure 7: Topics ordered by number of citations per person in
the Base-1000 graph.

With this in mind, we provide a normalized citation heatmap
visualization. The normalized citations for topic t at a given univer-
sity X with respect to BaseGraph B is nc(t,X ,B) = cX (t ) ∗ c(t )/C.
Here c(t ) = ∑

r∈B&t∈r
cite(r) is the number of researchers r working on

topic t in the BaseGraph universities, cX (t ) = ∑
r∈X&t∈r

cite(r) is the

number of citations for researchers r working on topic t at university
X , and C = ∑

r∈B
cite(r) is the number of citations in the entire Base-

Graph. For simplicity, t ∈ r means a topic t from the list of topics
for researcher r, and r ∈ B means a researcher r from a university in
B. When data is aggregated over several universities, this formula is
extended so that X represents a set of institutions.

Table 1 shows aggregate normalized citation counts for universi-
ties in the USA, in Europe and in Asia. Figure 8 compares the raw
citation count with the normalized version for a randomly selected
university, with respect to BaseGraph-1000. In the remainder of this
paper, we present only the normalized citation count heatmaps.

6 IMPLEMENTATION
For each researcher, our database stores name, GS id, university id,
total citations, email address domain name, affiliation, listed research
topics, research phrases, and stemmed phrases. We use a variety of
tools to clean, store, and process our data: mongodb scripts, sqllite,
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Table 1: Aggregate overlays for universities in the USA, Europe and Asia, each shown in relation to the reference graph BaseGraph-
1000. There is a clear progression from left to right: significant HRI emphasis on medical sciences in the USA, contrasted by HRI
emphasis on engineering and computer science in Asia.

Figure 8: A heatmap showing raw citation and normalized cita-
tion counts (which factors in the relative frequency of citation
of different research topics) for the same university.

python, R, Java-Lucene, openrefine. The Google Maps API and
jquery are used for map drawing and to handle user interaction in
the web application. We run python-django for the webserver and
mongodb for database storage and query. Generating the topics map
in svg format (layout, clustering, node-overlap removal) takes 14
seconds. Loading the initial base map takes 12,638ms, including
7,836ms for scripts, 2,444ms for rendering, and 275ms for paint-
ing (in Google Chrome v.58). Interaction with the BaseMap, map
navigation, zooming with edges takes 1,515ms. Computing HRI
overlays takes 3,129ms and citation heatmaps require 1,231ms. The
system currently runs as a virtual machine on a Dell PowerEdge
R430 server with 2 Intel(R) Xeon(R) CPU E5-2530 v4 @2.20GHz
processors and 32GB of memory.

7 USE CASES
GRAM provides free access to aggregated global research data in
a way that no other system does. Such information is of particular
interest to university managers and strategists, for whom the ability
to compare the performance, strength and weaknesses of their institu-
tion against others (or against the aggregates of others) and to explore

their researcher profiles can drive their decision-making, planning
and institutional reviews. There are two main use cases: external
institutional comparison (comparing one institution against others)
and internal institutional research profiling (identifying institutional
strengths in research areas, and facilitating collaborations).

Commercial organizations provide access to (and often visual-
izations of) similar data for an institutional fee. For the comparison
use case, SciVal (Elsevier) “offers quick, easy access to the research
performance of 8,500 research institutions and 220 nations world-
wide.” Academic Analytics, which focuses on research universities
in the USA and the UK, specifically supports “the strategic decision-
making process as well as a method for benchmarking in comparison
to other institutions.” In profiling an institution, Pure (Elsevier) “ag-
gregates your organization’s research information ... enables your
organization to build reports, carry out performance assessments,
manage researcher profiles, enable research networking and exper-
tise,” while In Cites (Thomson Reuters) allows you to “analyze
institutional productivity, monitor collaboration activity, identify
influential researchers, showcase strengths, and discover areas of
opportunity.” Universities pay hundreds of thousands of dollars for
these services, typically in the form of multi-year contracts.

We developed GRAM with input from managers in charge of
research and development at the University of Arizona, seeking
feedback on the usefulness of the system from the perspective of
conducting institutional review, comparison and strategy. The pri-
mary visualizations they requested are those that show the strengths
and weaknesses of one institution when compared with others. We
demonstrate this use case by showing the HRI and normalized cita-
tions for two randomly selected universities, using the BaseGraph-
1000 for comparison (Table 3).

A further request involved meta-analyses of different university
classifications, in order to identify patterns (and confirm some “folk-
lore knowledge"). In particular, we show comparisons between differ-
ent types of universities included in the list of 115 “Highest Research
Activity” universities in the USA, as defined by the Carnegie Clas-
sification of Institutions of Higher Education. We compare “public
land grant” universities (i.e., those given federal land by the Morrill
Acts of 1862 and 1890 specifically for agriculture and mechanical
learning) versus “public non-land grant” universities (Table 4), uni-
versities with/without Medical Schools (Table 2), and private/public
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Table 2: Comparison of universities with/without Medical Schools, showing an expected division in HRI between medical sciences (e.g.,
genetics, neuroscience) and computer science (e.g., machine learning, computer vision). Note that despite lower-than-average HRI in
machine learning for universities with Medical Schools, normalized citations for this topic are comparable to the other universities.
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Table 3: The HRI, citations and normalized citations for two randomly selected universities when compared with the BaseGraph-1000.
University 1 shows a clear strategy in investing in physical sciences and technology (at the expense of medical sciences). University
2 does not show any obvious HRI strategy, with lower HRI topics in the same topic clusters as higher HRI topics, and, despite its
higher-than-average investment in most topics across the whole map, it has very low normalized citation counts.

members of the Association of American Universities (Table 5). In
all cases, the images are shown with reference to BaseGraph-USA.

The response from the stakeholders to the GRAM system is
overwhelmingly positive; they particularly welcome its flexibility.
Despite the acknowledged limitations of the data source (discussed
below), they see the system as being highly instrumental for inform-
ing senior management about research strengths and weaknesses of
our institution, and in influencing future strategy.

8 DISCUSSION AND LIMITATIONS
We use Google Scholar as the source for our data, with all of its
advantages (e.g., a large amount of information) and disadvantages
(e.g., the data is not curated). Further, different research areas differ

in the extent of their representation in Google Scholar. For example,
there seem to be many more computer science and physics pro-
files than history and psychology ones. Researchers from different
universities also use Google Scholar profiles at different rates.

Once the data has been gathered, the choice of universities used
to create base graphs has a non-trivial impact on the comparisons
made. Focusing only on English language terms biases the results,
and despite our attempts to clean, split and merge topics, several
issues remain. For example, use of acronyms (e.g., NLP for natural
language processing) requires further expansion and merging.

Our HRI-based strengths and weaknesses calculations are asso-
ciated with other biases: the numbers used are not guaranteed to
be accurate reflections of an institution’s human investment in a
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Table 4: Comparison of Public Land Grant and Public Non-Land Grant Universities in the USA, showing the expected dominance of
agricultural topics (including ecology and conservation biology) on the left, and a “close-to-average” profile on the right.

Private AAU (26) Public AAU (34) Not AAU (55)
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Table 5: Comparison of universities with respect to membership of the Association of American Universities. The private universities
invest most heavily in the hottest current topics: machine learning and neuroscience, genetics, and immunology. The other two profiles
show a comparatively more balanced research profile, both surprisingly with under-investment in machine learning.

research topic since we cannot distinguish tenure-track faculty from
other type of staff (e.g., doctoral and postdoctoral students) in the
GS profiles. Citation-based calculations are also biased, e.g., due to
misattributed papers, the difficulty in perfectly matching specific cita-
tions to specific topics associated with a researcher, and distributing
the citation contribution among its co-authors.

9 CONCLUSIONS AND FUTURE WORK
One of the impacts of big data is an unexpected one, where solutions
to problems are being overlooked, as many tasks must cross several
disciplines/domains that produce considerable amounts of data but
interact only minimally. “Undiscovered public knowledge,” named
so by Swanson [41], is exactly such an example as knowledge can be
public, yet undiscovered, if independently created fragments are log-
ically related but never retrieved, brought together, and interpreted.

In the proposed GRAM system we attempt to retrieve publicly
available data, bring it together via text processing and graph and
map visualization techniques, in order to interpret and analyze world-
wide research activity. Despite non-trivial limitations, the system is

novel as it is based on large quantities of real, self-reported, bottom-
up information, unlike traditional top-down hierarchical taxonomies
and ontologies (which depend upon the creation of abstract category
labels). The GRAM system implements in-the-browser, map-based
interactive navigation of a large underlying network, supports pan-
ning, zooming and searching, and (with the help of map overlays)
makes it possible to visualize human resource investments and schol-
arly output for different academic institutions. The GRAM system is
open source and is available here: https://uamap-dev.arl.arizona.edu/
To the best of our knowledge, this is the only free, publicly available
tool enabling global overview of research topic activity, researcher
investment and researcher outputs.

Adding more data can augment the picture of a specific university,
or enable more detailed comparisons between different universities.
Discussions with university stakeholders indicate that there is a real
demand for a tool such as GRAM that facilitates both comparison
with competitor or benchmark institutions, while at the same time
providing information about active institutional research that can
help in directing university strategy.

https://uamap-dev.arl.arizona.edu/
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